- Step1. 基礎編
- 11. 確率変数と確率分布
11-4. 確率密度と確率密度関数
■確率密度
次の図は連続型確率分布のイメージを表したものです。横軸は確率変数を表します。11‐3章で学んだように、連続型確率変数の場合には確率変数がある一点の値をとる確率は0になることから、縦軸は確率ではなく「確率密度」というものを使います。確率密度は定義域内でのの値の「相対的な出やすさ」を表すものです。
■確率密度関数
連続型確率変数Xがある値xをとる確率密度を関数とすると、を「確率密度関数」と呼びます。確率とは異なり、になる場合もあります。
例題1:
確率変数がとる値が0から3までの実数を取る場合に、次のような確率密度関数を定義します。この関数からどのようなことが言えるでしょうか。
との値を求めると次のようになります。
であることから、この確率密度関数は1よりも3が「相対的に出やすい」ことが分かります。また、「確率密度関数が右肩上がり」=「が大きくなるほど確率密度も高い」=「高い値が出やすい」と読み取ることもできます。やといったの領域については、そのような値が出ない(=そのような値になり得ない)ことを表しています。
例題2:
次のような確率密度関数からどのようなことが言えるでしょうか。
この確率密度関数には、がとのあたりに山が二つあります。つまり、「他の値よりもやの近くの値が出やすい」ことが分かります。また、の方の山が高いことから「とを比べると、に近い値の方がより出やすい」ということも読み取れます。
11. 確率変数と確率分布
事前に読むと理解が深まる- 学習内容が難しかった方に -
- 11. 確率変数と確率分布
11-3. 連続型確率分布
- ブログ
確率変数とは